Richard Born writes:

The practice of arbitrarily thresholding p values is not only deeply embedded in statistical practice, it is also congenial to the human mind. It is thus not sufficient to tell our students, “Don’t do this.” We must vividly show them why the practice is wrong and its effects detrimental to scientific progress. I [Born] offer three teaching examples I have found to be useful in prompting students to think more deeply about the problem and to begin to interpret the results of statistical procedures as measures of how evidence should change our beliefs, and not as bright lines separating truth from falsehood.

He continues:

Humans are natural born categorizers. We instinctively take continuous variables and draw (often) arbitrary boundaries that allow us to put names to groups. For example, we divide the continuous visible spectrum up into discrete colors like “red,” “yellow,” and “blue.” And the body mass index (BMI) is a continuous measure of a person’s weight-to-height ratio, yet a brief scan of the Internet turns up repeated examples of the classification [into three discrete categories].

In some cases, such as for color, certain categories appear to be “natural,” as if they were baked into our brains (Rosch, 1973). In other cases, categorization is related to the need to make decisions, as is the case for many medical classifications. And the fact that we communicate our ideas using language—words being discrete entities—surely contributes to this tendency.

Nowhere is the tendency more dramatic—and more pernicious—than in the practice of null hypothesis significance testing (NHST), based on p values, where an arbitrary cutoff of 0.05 is used to separate “truth” from “falsehood.” Let us set aside the first obvious problem that in NHST we never accept the null (i.e., proclaim falsehood) but rather only fail to reject it. And let us also ignore the debate about whether we should change the cutoff to something more stringent, say 0.005 (Benjamin et al., 2018), and instead focus on what I consider to be the real problem: the cutoff itself. This is the problem I refer to as “black/white thinking.”

Because this tendency to categorize using p values is (1) natural and (2) abundantly reinforced in many statistics courses, we must do more than simply tell our students that it is wrong. We must show them why it is wrong and offer better ways of thinking about statistics. What follows are some practical methods I have found useful in classroom discussions with graduate students and postdoctoral fellows in neuroscience. . . .